Brian2GeNN Documentation
Release 1.5

Brian2GeNN authors

Jan 13, 2021

Contents

Using Brian2GeNN 3
1.1 Installing the Brian2GeNNinterface e 3
1.2 Using the Brian2GeNN interface 4
Unsupported features in Brian2GeNN 5
2.1 Restrictions on summed variables oL e 5
2.2 Linked variables e e e e e e e 5
2.3 CUStOM EVENLS . . v v v v o e e e i e 6
2.4 Heterogeneous delays Lo e e 6
2.5 Multiple synaptic pathways o e e e e e e e e e e e e e 7
2.6 Timed arrays e e e e e e e e e e e e e e e e e 7
277 Multipleclocks e 7
2.8 Multiple runs e e e e e e e e e e e e 7
2.9 Multiple networks e e e e e 7
2.10 Customschedules e 7
Brian2GeNN specific preferences 9
3.1 Connectivity o oo e e e 9
3.2 Compiler preferences i e e e e e e e e e e e e e 9
3.3 CUDADPIeferences v v v v v v i e 10
34 Listof preferences L e e e e e e e 10
How Brian2GeNN works inside 13
4.1 Modelandusercode in GeNN e 13
4.2 Code generation pipeline in Brian2GeNN Lo oL 13
43 Templatesin Brian2GeNN oL e 14
4.4 Datatransfersandresults L L e e e e e e 14
45 MEMOTY USAZE « « v v v v v e 14
brian2genn package 15
5.1 binomialmodule e e e e e e 15
5.2 codeobjectmodule e 15
5.3 correctness_testingmodule e 16
54 devicemodule e 18
5.5 genn_generatormodule e 25
5.6 dnsynmodule e 27
5.7 preferencesmodule 28

5.8 Subpackages
6 Indices and tables
Python Module Index

Index

31

33

35

Brian2GeNN Documentation, Release 1.5

Contents:

Contents 1

Brian2GeNN Documentation, Release 1.5

2 Contents

CHAPTER 1

Using Brian2GeNN

Brian supports generating standalone code for multiple devices. In this mode, running a Brian script generates source
code in a project tree for the target device/language. This code can then be compiled and run on the device, and
modified if needed. The Brian2GeNN package provides such a ‘device’ to run Brian 2 code on the GeNN (GPU
enhanced Neuronal Networks) backend. GeNN is in itself a code-generation based framework to generate and execute
code for NVIDIA CUDA. Through Brian2GeNN one can hence generate and run CUDA code on NVIDIA GPUs
based solely in Brian 2 input.

1.1 Installing the Brian2GeNN interface

In order to use the Brian2GeNN interface, all three Brian 2, GeNN and Brian2GeNN need to be fully installed. To
install GeNN and Brian 2, refer to their respective documentation:

¢ Brian 2 installation instructions
¢ GeNN installation instructions

Note that you will have to also install the CUDA toolkit and driver necessary to run simulations on a NVIDIA graph-
ics card. These will have to be installed manually, e.g. from NVIDIA’s web site (you can always run simulations
in the “CPU-only” mode, but that of course defeats the main purpose of Brian2GeNN...). Depending on the in-
stallation method, you might also have to manually set the CUDA_PATH environment variable (or alternatively the
devices.genn.cuda_backend.cuda_path preference) to point to CUDA’s installation directory.

To install brian2genn, use pip:

pip install brian2genn

(might require administrator privileges depending on the configuration of your system; add ——user to force an
installation with user privileges only).

As detailed in the GeNN installation instructions), you also need to ensure that GeNN’s bin directory is added to your
path. Alternatively, you can set the devices.genn.path preference to your GeNN directory to achieve the same effect.

https://brian2.readthedocs.io
http://genn-team.github.io/genn/
https://brian2.readthedocs.io/en/stable/introduction/install.html
http://genn-team.github.io/genn/documentation/4/html/d8/d99/Installation.html
https://developer.nvidia.com/cuda-downloads
http://genn-team.github.io/genn/documentation/4/html/d8/d99/Installation.html

Brian2GeNN Documentation, Release 1.5

Note: We no longer provide conda packages for Brian2GeNN. Conda packages for previous versions of Brian2GeNN
have been tagged with the archive label and are still available in the brian—team channel.

1.2 Using the Brian2GeNN interface

To use the interface one then needs to import the brian2genn interface:

’import brian2genn ‘

The you need to choose the ‘genn’ device at the beginning of the Brian 2 script, i.e. after the import statements, add:

set_device ('genn') ‘

At the encounter of the first run statement (Brian2GeNN does currently only support a single run statement per
script), code for GeNN will be generated, compiled and executed.

The set_device function can also take additional arguments, e.g. to run GeNN in its “CPU-only” mode and to get
additional debugging output, use:

set_device('genn', use_GPU=False, debug=True)

Not all features of Brian work with Brian2GeNN. The current list of excluded features is detailed in Unsupported
features in Brian2GeNN.

4 Chapter 1. Using Brian2GeNN

CHAPTER 2

Unsupported features in Brian2GeNN

2.1 Restrictions on summed variables

Summed variables are supported starting with version 1.4. There are a number of restrictions, however. Most impor-
tantly:

* the equations of a Synapses object can only use a single summed variable

» asummed variable cannot be combined with another action on a post-synaptic variable in the on_pre statement
(e.g. g_exc_post += w_exc).

2.2 Linked variables

Linked variables create a communication overhead that is problematic in GeNN. They are therefore at the moment not
supported. In principle support for this feature could be added but in the meantime we suggest to look into avoiding
linked variables by combining groups that are linked. For example

from brian2 import =«
import brian2genn
set_device ('genn_simple')

Common deterministic input

N = 25
tau_input = 5*ms
input = NeuronGroup (N, 'dx/dt = -x / tau_input + sin(0.1*t/ tau_input) : 1'")

The noisy neurons receiving the same input

tau = 10*ms

sigma = .015

egs_neurons = "''

dx/dt = (0.9 + .5 » I - x) / tau + sigma * (2 / tau)#**.5 » xi : 1
I : 1 (linked)

(continues on next page)

Brian2GeNN Documentation, Release 1.5

(continued from previous page)

neurons = NeuronGroup (N, model=egs_neurons, threshold='x > 1',

reset="x = 0', refractory=5xms)
neurons.x = 'rand()'
neurons.I = linked_var (input, 'x') # input.x is continuously fed into neurons.I
spikes = SpikeMonitor (neurons)

run (500+ms) example

could be replaced by

from brian2 import =«
import brian2genn
set_device ('genn_simple")

N = 25
tau_input = 5xms

Noisy neurons receiving the same deterministic input

tau = 10+*ms

sigma = .015

egs_neurons = "'"'

dI/dt= -I / tau_input + sin(0.1*t/ tau_input) : 1"')

dx/dt = (0.9 + .5 » I - x) / tau + sigma * (2 / tau)*x.5 » xi : 1

Tr

neurons = NeuronGroup (N, model=egs_neurons, threshold='x > 1',
reset="'x = 0', refractory=5xms)

neurons.x = 'rand()'

spikes = SpikeMonitor (neurons)

run (500+ms) example

In this second solution the variable I is calculated multiple times within the ‘noisy neurons’, which in a sense is an
unnecessary computational overhead. However, in the massively parallel GPU accelerators this is not necessarily a
problem. Note that this method only works where the common input is deterministic. If the input had been:

input = NeuronGroup (l, 'dx/dt = -x / tau_input + (2 /tau_input)**x.5 * xi : 1")

i.e. contains a random element, then moving the common input into the ‘noisy neuron’ population would make it
individual, independent noisy inputs with likely quite different results.

2.3 Custom events

GeNN does not support custom event types in addition to the standard threshold and reset, they can therefore not be
used with the Brian2GeNN backend.

2.4 Heterogeneous delays

At the moment, GeNN only has support for a single homogeneous delay for each synaptic population. Brian simula-
tions that use heterogeneous delays can therefore not use the Brian2GeNN backend. In simple cases with just a few
different delay values (e.g. one set of connections with a short and another set of connections with a long delay), this
limitation can be worked around by creating multiple Synapses objects with each using a homogeneous delay.

6 Chapter 2. Unsupported features in Brian2GeNN

Brian2GeNN Documentation, Release 1.5

2.5 Multiple synaptic pathways

GeNN does not have support for multiple synaptic pathways as Brian 2 does, you can therefore only use a single pre
and post pathway with Brian2GeNN.

2.6 Timed arrays

Timed arrays post a problem in the Brian2GeNN interface because they necessitate communication from the timed
array to the target group at runtime that would result in host to GPU copies in the final CUDA/C++ code. This could
lead to large inefficiences, the use of TimedArray is therefore currently restricted to code in run_regularly
operations that will be executed on the CPU.

2.7 Multiple clocks

GeNN is by design operated with a single clock with a fixed time step across the entire simulation. If you are using
multiple clocks and they are commensurate, please reformulate your script using just the fastest clock as the standard
clock. If your clocks are not commensurate, and this is essential for your simulation, Brian2GeNN can unfortunately
not be used.

2.8 Multiple runs

GeNN is designed for single runs and cannot be used for the Brian style multiple runs. However, if this is of use, code
can be run repeatedly “in multiple runs” that are completely independent. This just needs device.reinit () and
device.activate () issued after the run (runtime) command.

Note, however, that these multiple runs are completely independent, i.e. for the second run the code generation pipeline
for Brian2GeNN is repeated in its entirety which may incur a measurable delay.

2.9 Multiple networks

Multiple networks cannot be supported in the Brian2GeNN interface. Please use only a single network, either by

9. ¢

creating it explicitly as a Network object or by not creating any (i.e. using Brian’s “magic” system).

2.10 Custom schedules

GeNN has a fixed order of operations during a time step, Brian’s more flexible scheduling model (e.g. changing a
network’s schedule or individual objects’ when attribute) can therefore not be used.

2.5. Multiple synaptic pathways 7

Brian2GeNN Documentation, Release 1.5

8 Chapter 2. Unsupported features in Brian2GeNN

CHAPTER 3

Brian2GeNN specific preferences

3.1 Connectivity

The preference devices.genn.connectivity determines what connectivity scheme is used within GeNN to represent the
connections between neurons. GeNN supports the use of full connectivity matrices (‘DENSE’) or a representation
where connections are represented with sparse matrix methods (‘SPARSE’). You can set the preference like this:

from brian2 import =«
import brian2genn
set_device ('genn')

prefs.devices.genn.connectivity = 'DENSE'

3.2 Compiler preferences

On Linux and Mac, Brian2GeNN will use the compiler preferences specified for Brian2 for compiling the exe-
cutable. This means you should set the codegen.cpp.extra_compile_args preference, or codegen.cpp.
extra_compile_args_gcc

Brian2GeNN also offers a preference to specify additional compiler flags for CUDA compilation on Linux and Mac
with the nvce compiler: devices.genn.cuda_backend.extra_compile_args_nvce.

Note that all of the above preferences expect a Python list of individual compiler arguments, i.e. to for example add
an argument for the nvcc compiler, use:

prefs.devices.genn.cuda_backend.extra_compile_args_nvcc += ['—--verbose']

On Windows, Brian2GeNN will try to find the file vevarsall.bat to enable compilation with the MSVC compiler
automatically. If this fails, or if you have multiple versions of MSVC installed and want to select a specific one, you
can set the codegen.cpp.msvc_vars_location preference.

Brian2GeNN Documentation, Release 1.5

3.3 CUDA preferences

The devices.genn.cuda_backend preferences contain CUDA-specific preferences. If you have multiple
CUDA devices you can manually select a device like this:

prefs.devices.genn.cuda_backend.device_select = 'MANUAL'
prefs.devices.genn.cuda_backend.manual_device = 1

Normally GeNN automatically optimizes the ‘block size’ used for its CUDA kernels but this can also be overriden
like:

prefs.devices.genn.cuda_backend.blocksize_select_method = 'MANUAL'
prefs.devices.genn.cuda_backend.neuron_blocksize = 64

pre_neuron_reset_blocksize, pre_synapse_reset_blocksize, synapse_blocksize,
learning_blocksize, synapse_dynamics_blocksize, init_blocksize and

init_sparse_blocksize can also be configured in this way.

3.4 List of preferences

devices.genn.connectivity = 'SPARSE' This preference determines which connectivity scheme is to be
employed within GeNN. The valid alternatives are ‘DENSE’ and ‘SPARSE’. For ‘DENSE’ the GeNN dense
matrix methods are used for all connectivity matrices. When ‘SPARSE’ is chosen, the GeNN sparse matrix
representations are used.

devices.genn.kernel_timing=False This preference determines whether GeNN should record kernel
runtimes; note that this can affect performance.

devices.genn.path =None The path to the GeNN installation (if not set, the version of GeNN in the path will
be used instead)

devices.genn.synapse_span_type = 'POSTSYNAPTIC' This preference determines whether the
spanType (parallelization mode) for a synapse population should be set to pre-synapstic or post-synaptic.

Preferences that relate to the CUDA backend for the brian2genn interface

devices.genn.cuda_backend.blocksize_select_method = 'OCCUPANCY' The GeNN preference
blockSizeSelectMethod that determines whether GeNN should use its internal algorithms to optimise the differ-
ent block sizes.

devices.genn.cuda_backend.cuda_path =None The path to the CUDA installation (if not set, the
CUDA _PATH environment variable will be used instead)

devices.genn.cuda_backend.device_select = 'OPTIMAL' The GeNN preference deviceSelect-
Method that determines how to chose which GPU device to use.

devices.genn.cuda_backend.extra_compile_args_nvcc = [] Extra compile arguments (a list of
strings) to pass to the nvcc compiler.

devices.genn.cuda backend.init blocksize =32 The GeNN preference initBlockSize that deter-
mines the CUDA block size for the neuron kernel if blocksize_select_method is set to MANUAL.

devices.genn.cuda_backend.init_sparse_blocksize = 32 The GeNN preference initSparseBlock-
Size that determines the CUDA block size for the neuron kernel if blocksize_select_method is set to MANUAL.

devices.genn.cuda_backend.learning blocksize =32 The GeNN preference learningBlockSize
that determines the CUDA block size for the neuron kernel if blocksize_select_method is set to MANUAL.

10 Chapter 3. Brian2GeNN specific preferences

Brian2GeNN Documentation, Release 1.5

devices.genn.cuda_backend.manual_device =0 The GeNN preference manualDevicelD that deter-
mines CUDA enabled device should be used if device_select is set to MANUAL.

devices.genn.cuda_backend.neuron_blocksize = 32 The GeNN preference neuronBlockSize that de-
termines the CUDA block size for the neuron kernel if blocksize_select_method is set to MANUAL.

devices.genn.cuda_backend.pre_neuron_reset_blocksize =32 The GeNN preference preNeu-
ronResetBlockSize that determines the CUDA block size for the pre-neuron reset kernel if block-
size_select_method is set to MANUAL.

devices.genn.cuda_backend.pre_synapse_reset_blocksize =32 The GeNN preference preSy-
napseResetBlockSize that determines the CUDA block size for the pre-synapse reset kernel if block-
size_select_method is set to MANUAL.

devices.genn.cuda_backend.synapse_blocksize = 32 The GeNN preference synapseBlockSize that
determines the CUDA block size for the neuron kernel if blocksize_select_method is set to MANUAL.

devices.genn.cuda_backend.synapse_dynamics_blocksize = 32 The GeNN preference synapse-
DynamicsBlockSize that determines the CUDA block size for the neuron kernel if blocksize_select_method is
set to MANUAL.

3.4. List of preferences 11

Brian2GeNN Documentation, Release 1.5

12 Chapter 3. Brian2GeNN specific preferences

CHAPTER 4

How Brian2GeNN works inside

The Brian2GeNN interface is providing middleware to use the GeNN simulator framework as a backend to the Brian
2 simulator. It has been designed in a way that makes maximal use of the existing Brian 2 code base by deriving large
parts of the generated code from the cpp_standalone device of Brian 2.

4.1 Model and user code in GeNN

In GeNN a simulation is assembled from two main sources of code. Users of GeNN provide “code snippets” as C++
strings that define neuron and synapse models. These are then assembled into neuronal networks in a model definition
function. Based on the mdoel definition, GeNN generates GPU and equivalent CPU simulation code for the described
network. This is the first source of code.

The actual simulation and handling input and output data is the responsibility of the user in GeNN. Users provide their
own C/C++ code for this that utilizes the generated code described above for the core simulation but is otherwise fully
independent of the core GeNN system.

In the Brian2GeNN both the model definition and the user code for the main simulation are derived from the
Brian 2 model description. The user side code for data handling etc derives more or less directly from the Brian
2 cpp_standalone device in the form of GennUserCodeOb jects. The model definition code and “code snip-
pets” derive from separate templates and are capsulated into GeNNCodeOb jects.

4.2 Code generation pipeline in Brian2GeNN

The model generation pipeline in Brian2GeNN involves a number of steps. First, Brian 2 performs the usual interpre-
tation of equations and unit checking, as well as, applying an integration scheme onto ODEs. The resulting abstract
code is then translated into C++ code for GeNNUserCodeObjects and C++-like code for GeNNCodeObjects.
These are then assembled using templating in Jinja2 into C++ code and GeNN model definition code. The details of
making Brian 2’s cpp_standalone code suitable for the GeNN user code and GeNN model definition code and
code snippets are taken care of in the GeNNDevice.build function.

13

Brian2GeNN Documentation, Release 1.5

Once all the sources have been generated, the resulting GeNN project is built with the GeNN code generation pipeline.
See the GeNN manual for more details on this process.

4.3 Templates in Brian2GeNN

The templates used for code generation in Brian2GeNN, as mentioned above, partially derive from the
cpp_standalone templates of Brian 2. More than half of the templates are identical. Other templates, how-
ever, in particular for the model definition file and the main simulation engine and main entry file “runner.cc” have
been specifically written for Brian2GeNN to produce a valid GeNN project.

4.4 Data transfers and results

In Brian 2, data structures for initial values and synaptic connectivities etc are written to disk into binary files if a
standalone device is used. The executable of the standalone device then reads the data from disk and initializes its
variables with it. In Brian2GeNN the same mechanism is used, and after the data has been read from disk with the
native cpp_standalone methods, there is a translation step, where Brian2GeNN provides code that translates the
data from cpp_standalone arrays into the appropriate GeNN data structures. The methods for this process are
provided in the static (not code-generated) “b2glib”.

At the end of a simulation, the inverse process takes place and GeNN data is transfered back into cpp_standalone
arrays. Native Brian 2 cpp_standalone code is then invoked to write data back to disk.

If monitors are used, the translation occurs at every instance when monitors are updated.

4.5 Memory usage

Related to the implementation of data flows in Brian2GeNN described above the host memory used in a run in
brian2GeNN is about twice what would have been used in a Brian 2 native cpp_standalone implementation
because all data is held in two different formats - as cpp_standalone arrays and as GeNN data structures.

14 Chapter 4. How Brian2GeNN works inside

CHAPTER B

brian2genn package

Initialize self. See help(type(self)) for accurate signature.

5.1 binomial module

Implementation of BinomialFunction

5.2 codeobject module

Brian2GeNN defines two different types of code objects, GeNNCodeObject and GeNNUserCodeObject.
GeNNCodeObject is the class of code objects that produce code snippets for GeNN neuron or synapse mod-
els. GeNNUserCodeObject is the class of code objects that produce C++ code which is used as ‘“user-
side” code in GeNN. The class derives directly from Brian 2’s CPPStandaloneCodeObject, using the
CPPCodeGenerator.

Exported members: GeNNCodeOb ject, GeNNUserCodeObject

Classes

GeNNCodeOb ject(owner, code, variables, ...) Class of code objects that generate GeNN “code snip-
pets”

5.2.1 GeNNCodeObiject class

(Shortest import: from brian2genn.codeobject import GeNNCodeObject)

class brian2genn.codeobject .GeNNCodeObject (owner, code, variables, variable_indices, tem-
plate_name, template_source, compiler_kwds,

name=’codeobject*’)
Bases: brian2.codegen.codeobject.CodeObject

15

Brian2GeNN Documentation, Release 1.5

Class of code objects that generate GeNN “code snippets”

Methods
arfter_run() Runs the finalizing code in the namespace.
before_run() Runs the preparation code in the namespace.
compile()
run() Runs the main code in the namespace.
Details

after_run()
Runs the finalizing code in the namespace. This code will only be executed once per run.

Returns return_value : dict

A dictionary with the keys corresponding to the output_variables defined during
the call of CodeGenerator.code_object.

before_run ()
Runs the preparation code in the namespace. This code will only be executed once per run.

Returns return_value : dict

A dictionary with the keys corresponding to the output_variables defined during
the call of CodeGenerator.code_object.

compile ()

run ()
Runs the main code in the namespace.

Returns return_value : dict

A dictionary with the keys corresponding to the output_variables defined during
the call of CodeGenerator.code_object.

GeNNUserCodeOb ject(*args, **kwds) Class of code objects that generate GeNN “user code”

5.2.2 GeNNUserCodeObiject class

(Shortest import: from brian2genn.codeobject import GeNNUserCodeObject)

class brian2genn.codeobject .GeNNUserCodeObject (*args, **kwds)
Bases: brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject

Class of code objects that generate GeNN “user code”

5.3 correctness_testing module

Definitions of the configuration for correctness testing.
Exported members: GeNNConfiguration, GeNNConfigurationCPU, GeNNConfigurationOptimized

Classes

16 Chapter 5. brian2genn package

Brian2GeNN Documentation, Release 1.5

GeNNConfigurat ion([maximum_run_time])

Methods

5.3.1 GeNNConfiguration class

(Shortest import: from brian2genn.correctness_testing import GeNNConfiguration)

class brian2genn.correctness_testing.GeNNConfiguration (maximum_run_time=10. *

Msecond)
Bases: brian2.tests.features.base.Configuration

Methods

before run()

Details

before_run ()

GeNNConfigurationCPU([maximum_run_time])

Methods

5.3.2 GeNNConfigurationCPU class

(Shortest import: from brian2genn.correctness_testing import GeNNConfigurationCPU)

class brian2genn.correctness_testing.GeNNConfigurationCPU (maximum_run_time=10.

* Msecond)
Bases: brian2.tests.features.base.Configuration

Methods

before_ run()

Details

before_run ()

GeNNConfigurationOptimized([maximum_run_time])

Methods

5.3. correctness_testing module 17

Brian2GeNN Documentation, Release 1.5

5.3.3 GeNNConfigurationOptimized class

(Shortest import: from brian2genn.correctness_testing import
GeNNConfigurationOptimized)

class brian2genn.correctness_testing.GeNNConfigurationOptimized (maximum_run_time=10.

* Msecond)
Bases: brian2.tests.features.base.Configuration
Methods
before_ run()
Details
before_run ()
5.4 device module
Module implementing the bulk of the brian2genn interface by defining the “genn” device.
Exported members: GeNNDevice
Classes
DelayedCodeOb ject(owner, name, ...) Dummy class used for delaying the CodeObject creation

of stateupdater, thresholder, and resetter of a Neuron-
Group (which will all be merged into a single code ob-
ject).

5.4.1 DelayedCodeObiject class

(Shortest import: from brian2genn.device import DelayedCodeObject)

class brian2genn.device.DelayedCodeObject (owner, name, abstract_code, variables, vari-

able_indices, override_conditional_write)
Bases: object

Dummy class used for delaying the CodeObject creation of stateupdater, thresholder, and resetter of a Neuron-
Group (which will all be merged into a single code object).

Methods

after_run()
before_ run()

Details

after_run()

before_run /()

18 Chapter 5. brian2genn package

https://docs.python.org/3/library/functions.html#object

Brian2GeNN Documentation, Release 1.5

GeNNDevice() The main “genn” device.

5.4.2 GeNNDevice class

(Shortest import: from brian2genn.device import GeNNDevice)

class brian2genn.device.GeNNDevice
Bases: brian2.devices.cpp_standalone.device.CPPStandaloneDevice

The main “genn” device. This does most of the translation work from Brian 2 generated code to functional
GeNN code, assisted by the “GeNN language”.

Attributes
source_files Set of all source and header files (to be included in
runner)
Methods
activate([build_on_run]) Called when this device is set as the current device.
add_array_variable(model, varname, vari-
able)
add_array_variables(model, owner)
add_parameter(model, varname, variable)
build([directory, compile, run, use_GPU, ...]) This function does the main post-translation work for
the genn device.
code_ob ject(owner, name, abstract_code, ...) Processes abstract code into code objects and stores

them in different arrays for GeNNCodeObjects
and GeNNUserCodeObjects.

code_object_class([codeobj_class]) Return CodeObject class (either
CPPStandaloneCodeObject class or in-
put)

collect_synapses_variables(synapse_model,

)

compile_source(debug, directory, use_GPU)

copy_source_files(writer, directory)

fill _with_array(var, arr) Fill an array with the values given in another array.

fix_random_generators(model, code) Translates cpp_standalone style random num-
ber generator calls into GeNN- compati-
ble calls by replacing the cpp_standalone
_vectorisation_idx argument with the
GeNN _seed argument.

fix_synapses_code(synapse_model, pathway,

)
generate_code_ob ject s(writer)
generate_engine_source(writer, objects)
generate_main_source(writer, main_lines)
generate_makefile(directory, use_GPU)
generate_max_row_length code_ob ject s(writer)

Continued on next page

5.4. device module 19

Brian2GeNN Documentation, Release 1.5

Table 14 — continued from previous page
generate_model_source(writer, main_lines,

.2)
generate_objects_source(arange_arrays,
net, ...)
insert_ code(slot, code) Insert custom C++ code directly into main. cpp.
make_main_1lines() Generates the code lines that handle initialisation of

Brian 2 cpp_standalone type arrays.

network_ run(net, duration[, report, ...])
process_neuron_groups(neuron_groups, ob-
jects)

process_poisson_groups(objects, pois-
son_groups)
process_rate_monitors(rate_monitors)
process_spike_monitors(spike_monitors)
process_spikegenerators(spikegenerator_groups)
process_state_monitors(directory,...)
process_synapses(synapse_groups, objects)
run(directory, use_GPU, with_output)
variableview set_with_expression(...[,

)

variableview set_with_expression conditional(...)

variableview set_with_index array(...)

Details

source_files
Set of all source and header files (to be included in runner)

activate (build_on_run=True, **kwargs)
Called when this device is set as the current device.

add_array_variable (model, varname, variable)
add_array_variables (model, owner)
add_parameter (model, varname, variable)

build (directory="GeNNworkspace’, compile=True, run=True, use_GPU=True, debug=False,

with_output=True, direct_call=True)
This function does the main post-translation work for the genn device. It uses the code generated dur-

ing/before run() and extracts information about neuron groups, synapse groups, monitors, etc. that is then
formatted for use in GeNN-specific templates. The overarching strategy of the brian2genn interface is to
use cpp_standalone code generation and templates for most of the “user-side code” (in the meaning defined
in GeNN) and have GeNN-specific templates for the model definition and the main code for the executable
that pulls everything together (in main.cpp and engine.cpp templates). The handling of input/output arrays
for everything is lent from cpp_standalone and the cpp_standalone arrays are then translated into GeNN-
suitable data structures using the static (not code-generated) b2glib library functions. This means that the
GeNN specific cod only has to be concerned about executing the correct model and feeding back results
into the appropriate cpp_standalone data structures.

code_obiject (owner, name, abstract_code, variables, template_name, variable_indices,

codeobj_class=None, template_kwds=None, override_conditional_write=None,
“rkwds) . o
Processes abstract code into code objects and stores them in different arrays for GeNNCodeObjects and
GeNNUserCodeObjects.

20 Chapter 5. brian2genn package

Brian2GeNN Documentation, Release 1.5

code_obiject_class (codeobj_class=None, *args, **kwds)
Return CodeOb ject class (either CPPStandaloneCodeObject class or input)

Parameters codeobj_class : a CodeObject class, optional

If this is keyword is set to None or no arguments are given, this method will return the
default (CPPStandaloneCodeObject class).

fallback_pref : str, optional
For the cpp_standalone device this option is ignored.
Returns codeobj_class : class
The CodeOb ject class that should be used
collect_synapses_variables (synapse_model, pathway, codeobj)
compile_source (debug, directory, use_GPU)
copy_source_files (writer, directory)

fill_with_array (var, arr)
Fill an array with the values given in another array.

Parameters var : ArrayVariable
The array to fill.
arr : ndarray
The array values that should be copied to var.

fix_random generators (model, code)
Translates cpp_standalone style random number generator calls into GeNN- compatible calls by replacing
the cpp_standalone _vectorisation_idx argument with the GeNN __seed argument.

fix_synapses_code (synapse_model, pathway, codeobj, code)
generate_code_objects (writer)

generate_engine_source (writer, objects)

generate_main_source (writer, main_lines)

generate_makefile (directory, use_GPU)
generate_max_row_length_code_objects (wrifer)
generate_model_source (writer, main_lines, use_GPU)
generate_objects_source (arange_arrays, net, static_array_specs, synapses, writer)

insert_code (slot, code)
Insert custom C++ code directly into main . cpp. The available slots are:

before_start/after_ start Before/after allocating memory for the arrays and loading arrays
from disk.

before_run/after run Before/after calling GeNN’s run function.

before_end/after_end Before/after writing results to disk and deallocating memory.

Parameters slot : str
The name of the slot where the code will be placed (see above for list of available slots).

code : str

5.4. device module 21

Brian2GeNN Documentation, Release 1.5

The C++ code that should be inserted.

make_main_lines ()
Generates the code lines that handle initialisation of Brian 2 cpp_standalone type arrays. These are then
translated into the appropriate GeNN data structures in separately generated code.

network_run (net, duration, report=None, report_period=10. * second, namespace=None, pro-
file=False, level=0, **kwds)

process_neuron_groups (neuron_groups, objects)
process_poisson_groups (objects, poisson_groups)
process_rate_monitors (rate_monitors)
process_spike_monitors (spike_monitors)
process_spikegenerators (spikegenerator_groups)
process_state_monitors (directory, state_monitors, writer)
process_synapses (synapse_groups, objects)

run (directory, use_GPU, with_output)

variableview set_with_expression (variableview, item, code, run_namespace,
check_units=True)

variableview_set_with_expression_conditional (variableview, cond, code,
run_namespace, check_units=True)

variableview_set_with_index_array (variableview, item, value, check_units)

neuronMode1() Class that contains all relevant information of a neuron
model.

5.4.3 neuronModel class

(Shortest import: from brian2genn.device import neuronModel)

class brian2genn.device.neuronModel
Bases: object

Class that contains all relevant information of a neuron model.

rateMonitorModel() CLass that contains all relevant information about a rate
monitor.

5.4.4 rateMonitorModel class

(Shortest import: from brian2genn.device import rateMonitorModel)

class brian2genn.device.rateMonitorModel
Bases: object

CLass that contains all relevant information about a rate monitor.

22 Chapter 5. brian2genn package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Brian2GeNN Documentation, Release 1.5

spikeMonitorModel() Class the contains all relevant information about a spike
monitor.

5.4.5 spikeMonitorModel class

(Shortest import: from brian2genn.device import spikeMonitorModel)

class brian2genn.device.spikeMonitorModel
Bases: object

Class the contains all relevant information about a spike monitor.

spikegeneratorModel() Class that contains all relevant information of a spike
generator group.

5.4.6 spikegeneratorModel class

(Shortest import: from brian2genn.device import spikegeneratorModel)

class brian2genn.device.spikegeneratorModel
Bases: object

Class that contains all relevant information of a spike generator group.

stateMonitorModel() Class that contains all relvant information about a state
monitor.

5.4.7 stateMonitorModel class

(Shortest import: from brian2genn.device import stateMonitorModel)

class brian2genn.device.stateMonitorModel
Bases: object

Class that contains all relvant information about a state monitor.

synapseModel() Class that contains all relevant information about a
synapse model.

5.4.8 synapseModel class

(Shortest import: from brian2genn.device import synapseModel)

class brian2genn.device.synapseModel
Bases: object

Class that contains all relevant information about a synapse model.

Functions

5.4. device module 23

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Brian2GeNN Documentation, Release 1.5

decorate(code, variables, shared_variables, ...) Support function for inserting GeNN-specific “decora-
tions” for variables and parameters, such as $(.).

5.4.9 decorate function

(Shortest import: from brian2genn.device import decorate)

brian2genn.device.decorate (code, variables, shared_variables, parameters, do_final=True)
Support function for inserting GeNN-specific “decorations” for variables and parameters, such as $(.).

extract_source_variables(variables, var- Support function to extract the “atomic” variables used
name, ...) in a variable that is of instance Subexpression.

5.4.10 extract_source_variables function

(Shortest import: from brian2genn.device import extract_source_variables)

brian2genn.device.extract_source_variables (variables, varname, smvariables)
Support function to extract the “atomic” variables used in a variable that is of instance Subexpression.

find executable(executable) Tries to find ‘executable’ in the path

5.4.11 find_executable function

(Shortest import: from brian2genn.device import find_executable)

brian2genn.device.find_executable (executable)
Tries to find ‘executable’ in the path

Modified version of distutils.spawn.find_executable as this has stupid rules for extensions on Windows. Returns
the complete filename or None if not found.

freeze(code, ns) Support function for substituting constant values.

5.4.12 freeze function

(Shortest import: from brian2genn.device import freeze)

brian2genn.device.freeze (code, ns)
Support function for substituting constant values.

get_gcc_compile_args() Get the compile args for GCC based on the users pref-
erences.

5.4.13 get_gcc_compile_args function

(Shortest import: from brian2genn.device import get_gcc_compile_args)

brian2genn.device.get_gcc_compile_args ()

24 Chapter 5. brian2genn package

Brian2GeNN Documentation, Release 1.5

Get the compile args for GCC based on the users preferences. Uses Brian’s preferences for the C++ compilation
(either codegen.cpp.extra_compile_args or codegen.cpp.extra_compile_args_gcc).

Returns (compile_args_gcc, compile_args_msvc, compile_args_nvce) : (str, str, str)

Tuple with the respective compiler arguments (as strings).

stringify(code) Helper function to prepare multiline strings (potentially
including quotation marks) to be included in strings.

5.4.14 stringify function

(Shortest import: from brian2genn.device import stringify)

brian2genn.device.stringify (code)
Helper function to prepare multiline strings (potentially including quotation marks) to be included in strings.

Parameters code : str
The code to convert.

Objects

genn_device The main “genn” device.

5.4.15 genn_device object

(Shortest import: from brian2genn.device import genn_device)

brian2genn.device.genn_device = <brian2genn.device.GeNNDevice object>
The main “genn” device. This does most of the translation work from Brian 2 generated code to functional
GeNN code, assisted by the “GeNN language”.

5.5 genn_generator module

The code generator for the “genn” language. This is mostly C++ with some specific decorators (mainly “__host__
__device__") to allow operation in a CUDA context.

Exported members: GeNNCodeGenerator

Classes

GeNNCodeGenerator(*args, **kwds) “GeNN language”

5.5.1 GeNNCodeGenerator class

(Shortest import: from brian2genn.genn_generator import GeNNCodeGenerator)

class brian2genn.genn_generator.GeNNCodeGenerator (*args, **kwds)
Bases: brian2.codegen.generators.base.CodeGenerator

“GeNN language”

For user-defined functions, there are two keys to provide:

5.5. genn_generator module 25

Brian2GeNN Documentation, Release 1.5

support_code The function definition which will be added to the support code.

hashdefine_code The #define code added to the main loop.

Attributes

flush denormals

restrict

Methods

denormals_to_zero_code()

determine_keywords() A dictionary of values that is made available to the
templated.

get_array_name(var|, access_data]) Get a globally unique name for a
ArrayVariable.

translate_expression(expr) Translate the given expression string into a string in

the target language, returns a string.

translate_one_ statement_sequence(statements)

translate_statement(statement) Translate a single line Statement into the target
language, returns a string.

translate_to_declarations(statements)

translate to_read_ arrays(statements)

translate_ to_statement s(statements)

translate to_write_arrays(statements)

Details

flush denormals
restrict
denormals_to_zero_code ()

determine_keywords ()
A dictionary of values that is made available to the templated. This is used for example by the
CPPCodeGenerator to set up all the supporting code

static get_array name (var, access_data=True)
Get a globally unique name for a ArrayVariable.

Parameters var : ArrayVariable
The variable for which a name should be found.
access_data : bool, optional

For DynamicArrayVariable objects, specifying True here means the name for
the underlying data is returned. If specifying False, the name of object itself is re-
turned (e.g. to allow resizing).

Returns :

name : str

26

Chapter 5. brian2genn package

Brian2GeNN Documentation, Release 1.5

A unige name for var.

translate_expression (expr)
Translate the given expression string into a string in the target language, returns a string.

translate_ one_statement_sequence (statements, scalar=False)

translate_statement (statement)
Translate a single line Statement into the target language, returns a string.

translate_to_declarations (statements)
translate_to_read_arrays (statements)
translate_ to_statements (statements)
translate_to_write_arrays (statements)

Functions

get_var_ndim(v[, default_value]) Helper function to get the ndim attribute of a
DynamicArrayVariable, falling back to the pre-
vious name dimensions if necessary.

5.5.2 get_var_ndim function

(Shortest import: from brian2genn.genn_generator import get_var_ndim)

brian2genn.genn_generator.get_var_ndim (v, default_value=None)
Helper function to get the ndim attribute of a DynamicArrayVariable, falling back to the previous name
dimensions if necessary.

Parameters v: ArrayVariable
The variable for which to retrieve the number of dimensions.
default_value : optional
A default value if the attribute does not exist
Returns ndim : int

Number of dimensions

5.6 insyn module

GeNN accumulates postsynaptic changes into a variable inSyn. The idea of this module is to check, for a given
Synapses, whether or not it can be recast into this formulation, and if so to relabel the variables appropriately.

In GeNN, each synapses object has an associated variable inSyn. The idea is that we will do something like this in
Brian terms:

v += w (synapses code) dv/dt = -v/tau (neuron code)
should be replaced by:

inSyn += w (synapses code) dv/dt = -v/tau (neuron code) v +=inSyn; inSyn = 0; (custom operation carried
out after integration step)

5.6. insyn module 27

Brian2GeNN Documentation, Release 1.5

The reason behind this organisation in GeNN is that the communication of spike events and the corresponding updates
of post-synaptic variables are separated out for better performance. In priniciple all kinds of operations on the pre-
and post-synaptic variables can be allowed but with a heavy hit in the computational speed.

The conditions for this rewrite to be possible are as follows for presynaptic event code: - Each expression is allowed
to modify synaptic variables. - An expression can modify a neuron variable only in the following ways:

neuron_var += expr (where expr contains only synaptic variables) neuron_var = expr (where expr-
neuron_var can be simplified to contain only synaptic variables)

* The set of modified neuron variables can only have one element
And for the postsynaptic code, only synaptic variables can be modified.

The output of this code should be: - Raise an error if it is not possible, explaining why - Replace the line neuron_var
(+)= expr with addtoinSyn = new_expr - Return neuron_var so that it can be used appropriately in GeNNDevice.build

The GeNN syntax is:
addtoinSyn = expr
Brian codegen implementation:

I think the correct place to start is given a Statement sequence for a Synapses pre or post code object, check the
conditions. Then, we need to create two additional CodeObjects which overwrite translate_one_statement_sequence
to call this function and rewrite the appropriate statement.

Functions

check_pre_code(codegen, stmts, vars_pre, ...) Given a set of statements stmts where the variables
names in vars_pre are presynaptic, in vars_syn are
synaptic and in vars_post are postsynaptic, check that
the conditions for compatibility with GeNN are met, and
return a new statement sequence translated for compat-
ibility with GeNN, along with the name of the targeted
variable.

5.6.1 check_pre_code function

(Shortest import: from brian2genn.insyn import check_pre_code)

brian2genn.insyn.check_pre_code (codegen, stmts, vars_pre, vars_syn, vars_post, condi-

tional_write_vars)
Given a set of statements stmts where the variables names in vars_pre are presynaptic, in vars_syn are synaptic

and in vars_post are postsynaptic, check that the conditions for compatibility with GeNN are met, and return a
new statement sequence translated for compatibility with GeNN, along with the name of the targeted variable.

Also adapts the synaptic statement to be multiplied by O for a refractory post-synaptic cell.

5.7 preferences module

Preferences that relate to the brian2genn interface.

Classes

DeprecatedValidator(message) ‘Validator’ for deprecated preferences

28 Chapter 5. brian2genn package

Brian2GeNN Documentation, Release 1.5

5.7.1 DeprecatedValidator class

(Shortest import: from brian2genn.preferences import DeprecatedvValidator)

class brian2genn.preferences.DeprecatedValidator (message)
Bases: object

“Validator’ for deprecated preferences

Used as a validator for preferences that have been (rudely) deprecated

Methods

___call__ (value) Call self as a function.

Details

__call (value)
Call self as a function.

5.8 Subpackages

5.8. Subpackages 29

https://docs.python.org/3/library/functions.html#object

Brian2GeNN Documentation, Release 1.5

30

Chapter 5. brian2genn package

CHAPTER O

Indices and tables

* genindex
* modindex

e search

31

Brian2GeNN Documentation, Release 1.5

32

Chapter 6. Indices and tables

Python Module Index

brian2genn.__init_ , 15

b

brian2genn.binomial, 15

C

brian2genn.codeobject, 15
brian2genn.correctness_testing, 16

d

brian2genn.device, 18

g

brian2genn.genn_generator, 25
|
brian2genn.insyn, 27

P

brian2genn.preferences, 28

33

Brian2GeNN Documentation, Release 1.5

34

Python Module Index

Index

SymbO|S brian2genn.preferences (module), 28
__call () (briandenn.preferences.DeprecatedValidatok?uild () (brian2genn.device. GeNNDevice method), 20
method), 29 C
A check_pre_code () (inmodule brian2genn.insyn), 28
activate () (brian2genn.device.GeNNDevice code_object () (brian2genn.device.GeNNDevice
method), 20 method), 20
code_object_class()

add_array_variable () . . .
(brian2genn.device. GeNNDevice method) (brian2genn.device.GeNNDevice method),
’ 20
20
collect_synapses_variables()

add_array_variables ()
v (brian2genn.device.GeNNDevice method),

(brian2genn.device. GeNNDevice method),

21
20 ' ' .
add_parameter () (brian2genn.device.GeNNDevice compile () (brian2genn.codeobject. GeNNCodeObject
method), 20 method), 16
after_run () (brian2genn.codeobject. GeNNCodeObject ©°™P* le_source () (brian2genn.device. GeNNDevice
method), 16 method), 21
after_run () (brian2genn.device.DelayedCodeObject Copy_sour'ce_fl les (') '
method), 18 (brian2genn.device. GeNNDevice method),
’ 21

B D

before_run () (briandenn.codeobject.GeNNCodeObjecOtleCora te () (in module brian2genn.device), 24

method), 16, . DelayedCodeObject (class in brian2genn.device),
before_run () (brian2genn.correctness_testing. GeNNConﬁguratwrg

method), 17, . denormals _to_zero_code ()
before_run () (brian2genn.correctness_testing. GeNNC onﬁguratm(b%l; rlzj2genn genn_generator.GeNNCodeGenerator
method), 17 method), 26
before_run () (brian2genn.correctness_testing. GeNNC %lgébfigggi%g%%g%a tor (class in
method), | 8, . . brian2genn.preferences), 29
before_run () (brian2genn.device.DelayedCodeObject determine keywords ()
) method), %8) (brian2genn.genn_generator. GeNNCodeGenerator
brian2genn._ _init__ (module), 15 method), 26
brian2genn.binomial (module), 15 ’
brian2genn.codeobject (module), 15 E
brian2genn.correctness_testing (module), extract_source variables () (in module
) 16) brian2genn.device), 24
brian2genn.device (module), 18
brian2genn.genn_generator (module), 25 F

brian2genn.insyn (module), 27 £ill with_array ()

35

Brian2GeNN Documentation, Release 1.5

(brian2genn.device. GeNNDevice method),
21

find_executable () (in module brian2genn.device),
24

fix_random_generators ()
(brian2genn.device. GeNNDevice
21

fix_synapses_code ()
(brian2genn.device.GeNNDevice
21

method),

method),

get_var_ndim/() (in
brian2genn.genn_generator), 27

insert_code ()
method), 21

M

make_main_lines ()
(brian2genn.device. GeNNDevice

flush_denormals (brian2genn.genn_generator. GeNNCodeGenergtpr

attribute), 26
freeze () (in module brian2genn.device), 24

G

generate_code_objects ()
(brian2genn.device. GeNNDevice
21

generate_engine_source ()
(brian2genn.device. GeNNDevice
21

generate_main_source ()
(brian2genn.device. GeNNDevice
21

generate_makefile ()
(brian2genn.device.GeNNDevice
21

generate_max_row_length_code_objects ()
(brian2genn.device.GeNNDevice method), 21

generate_model_source ()

method),

method),

method),

method),

(brian2genn.device. GeNNDevice method),
21

generate_objects_source ()
(brian2genn.device. GeNNDevice method),

21
genn_device (in module brian2genn.device), 25
GeNNCodeGenerator (class in
brian2genn.genn_generator), 25
GeNNCodeObject (class in brian2genn.codeobject),
15
GeNNConfiguration (class in
brian2genn.correctness_testing), 17
GeNNConfigurationCPU (class in
brian2genn.correctness_testing), 17
GeNNConfigurationOptimized (class in
brian2genn.correctness_testing), 18
GeNNDevice (class in brian2genn.device), 19
GeNNUserCodeObject (class in
brian2genn.codeobject), 16

N

network_run ()
method), 22

module

(brian2genn.device. GeNNDevice

method),

(brian2genn.device. GeNNDevice

neuronModel (class in brian2genn.device), 22

P

process_neuron_groups ()
(brian2genn.device. GeNNDevice
22
process_poisson_groups ()
(brian2genn.device. GeNNDevice
22
process_rate_monitors ()
(brian2genn.device. GeNNDevice
22
process_spike_monitors ()
(brian2genn.device. GeNNDevice
22
process_spikegenerators ()
(brian2genn.device. GeNNDevice
22
process_state_monitors()
(brian2genn.device. GeNNDevice
22
process_synapses ()
(brian2genn.device. GeNNDevice
22

R

method),

method),

method),

method),

method),

method),

method),

rateMonitorModel (class in brian2genn.device), 22

restrict (brian2genn.genn_generator. GeNNCodeGenerator

attribute), 26
run ()
method), 16

(brian2genn.codeobject. GeNNCodeObject

run () (brian2genn.device. GeNNDevice method), 22

get_array_name () (brian2genn.genn_generator. GeNNCodeGenerator)))
source_files (brian2genn.device. GeNNDevice at-

static method), 26
get_gcc_compile_args () (in
brian2genn.device), 24

module

tribute), 20
spikegeneratorModel
brian2genn.device), 23

(class

36

Index

Brian2GeNN Documentation, Release 1.5

spikeMonitorModel (class in brian2genn.device),
23

stateMonitorModel (class in brian2genn.device),
23

stringify () (in module brian2genn.device), 25

synapseModel (class in brian2genn.device), 23

T

translate_expression ()
(brian2genn.genn_generator. GeNNCodeGenerator
method), 27

translate_one_statement_sequence ()
(brian2genn.genn_generator. GeNNCodeGenerator
method), 27

translate_statement ()
(brian2genn.genn_generator.GeNNCodeGenerator
method), 27

translate_to_declarations ()
(brian2genn.genn_generator. GeNNCodeGenerator
method), 27

translate_to_read_arrays()
(brian2genn.genn_generator. GeNNCodeGenerator
method), 27

translate_to_statements ()
(brian2genn.genn_generator. GeNNCodeGenerator
method), 27

translate_to_write_arrays()
(brian2genn.genn_generator. GeNNCodeGenerator
method), 27

\Y

variableview_set_with_expression ()
(brian2genn.device. GeNNDevice method), 22

variableview_set_with_expression_conditional ()
(brian2genn.device. GeNNDevice method), 22

variableview_set_with_index_array ()
(brian2genn.device. GeNNDevice method), 22

Index

37

	Using Brian2GeNN
	Installing the Brian2GeNN interface
	Using the Brian2GeNN interface

	Unsupported features in Brian2GeNN
	Restrictions on summed variables
	Linked variables
	Custom events
	Heterogeneous delays
	Multiple synaptic pathways
	Timed arrays
	Multiple clocks
	Multiple runs
	Multiple networks
	Custom schedules

	Brian2GeNN specific preferences
	Connectivity
	Compiler preferences
	CUDA preferences
	List of preferences

	How Brian2GeNN works inside
	Model and user code in GeNN
	Code generation pipeline in Brian2GeNN
	Templates in Brian2GeNN
	Data transfers and results
	Memory usage

	brian2genn package
	binomial module
	codeobject module
	correctness_testing module
	device module
	genn_generator module
	insyn module
	preferences module
	Subpackages

	Indices and tables
	Python Module Index
	Index

