

Brian2GeNN documentation

Contents:

	Using Brian2GeNN

	Unsupported features in Brian2GeNN

	Brian2GeNN specific preferences

	How Brian2GeNN works inside

	Reference documentation

Indices and tables

	Index

	Module Index

	Search Page

Using Brian2GeNN

Brian supports generating standalone code for multiple devices. In
this mode, running a Brian script generates source code in a project
tree for the target device/language. This code can then be compiled
and run on the device, and modified if needed. The Brian2GeNN package
provides such a ‘device’ to run Brian 2 [https://brian2.readthedocs.io] code
on the GeNN [http://genn-team.github.io/genn/] (GPU enhanced
Neuronal Networks) backend. GeNN is in itself a code-generation based
framework to generate and execute code for NVIDIA CUDA. Through
Brian2GeNN one can hence generate and run CUDA code on NVIDIA GPUs
based solely in Brian 2 input.

Installing the Brian2GeNN interface

In order to use the Brian2GeNN interface, all three Brian 2, GeNN and
Brian2GeNN need to be fully installed. The easiest way to do this is by using
the conda [https://conda.io/docs/] package provided in the
brian-team channel [https://anaconda.org/brian-team] on https://anaconda.org.
This will install Brian 2 and its dependencies, and Brian2GeNN with an internal
version of GeNN (you can always switch to using an existing GeNN installation
by setting the devices.genn.path preference). Note that this will not
install the CUDA toolkit and driver necessary to run simulations on a NVIDIA
graphics card. These will have to be installed manually, e.g. from NVIDIA’s
web site [https://developer.nvidia.com/cuda-downloads] (you can always run
simulations in the “CPU-only” mode, but that of course defeats the main
purpose of Brian2GeNN…). Depending on the installation method, you might
also have to manually set the CUDA_PATH environment variable (or
alternatively the devices.genn.cuda_path preference) to point to
CUDA’s installation directory.

To install Brian2GeNN via conda use:

conda install -c brian-team brian2genn

If you are not using the conda package manager or if there is no conda package
for your architecture, you can always install brian2genn from its source
package on http://pypi.python.org/

pip install brian2genn

(might require administrator privileges depending on the configuration of your
system; add --user to force an installation with user privileges only).
Note that in this case, GeNN needs to be installed manually (see its
installation instructions [http://genn-team.github.io/genn/documentation/html/Installation.html]),
and either the GENN_PATH environment variable of the devices.genn.path
preference have to point to its directory. In addition, the CUDA libraries have
to be installed (see above).

Note

The above commands install the necessary packages to run simulations with
Brian2/GeNN, but most users would install additional packages, e.g.
matplotlib [http://matplotlib.org/] for plotting. This can be done with
the same package management tools mentioned above, e.g. use
conda install matplotlib or pip install matplotlib.

Using the Brian2GeNN interface

To use the interface one then needs to import the brian2genn interface:

import brian2genn

The you need to choose the ‘genn’ device at the
beginning of the Brian 2 script, i.e. after the import statements,
add:

set_device('genn')

At the encounter of the first run statement (Brian2GeNN does currently
only support a single run statement per script), code for GeNN will be
generated, compiled and executed.

The set_device function can also take additional arguments, e.g. to run
GeNN in its “CPU-only” mode and to get additional debugging output, use:

set_device('genn', useGPU=False, debug=True)

Not all features of Brian work with Brian2GeNN. The current list of
excluded features is detailed in Unsupported features in Brian2GeNN.

Unsupported features in Brian2GeNN

Summed variables

Summed variables are currently not supported in GeNN due to the cross-
population nature of this feature. However, a simple form of summed
variable is supported and intrinsic to GeNN. This is the action of
‘pre’ code in a Synapses definition onto a pre-synaptic
variable. The allowed interaction is summing onto one pre-synaptic
variable from each Synapses group.

Linked variables

Linked variables create a communication overhead that is problematic in
GeNN. They are therefore at the moment not supported. In principle
support for this feature could be added but in the meantime we suggest
to look into avoiding linked variables by combining groups that are
linked.
For example

from brian2 import *
import brian2genn
set_device('genn_simple')

Common deterministic input
N = 25
tau_input = 5*ms
input = NeuronGroup(N, 'dx/dt = -x / tau_input + sin(0.1*t/ tau_input) : 1')

The noisy neurons receiving the same input
tau = 10*ms
sigma = .015
eqs_neurons = '''
dx/dt = (0.9 + .5 * I - x) / tau + sigma * (2 / tau)**.5 * xi : 1
I : 1 (linked)
'''
neurons = NeuronGroup(N, model=eqs_neurons, threshold='x > 1',
 reset='x = 0', refractory=5*ms)
neurons.x = 'rand()'
neurons.I = linked_var(input, 'x') # input.x is continuously fed into neurons.I
spikes = SpikeMonitor(neurons)

run(500*ms)example

could be replaced by

from brian2 import *
import brian2genn
set_device('genn_simple')

N = 25
tau_input = 5*ms

Noisy neurons receiving the same deterministic input
tau = 10*ms
sigma = .015
eqs_neurons = '''
dI/dt= -I / tau_input + sin(0.1*t/ tau_input) : 1')
dx/dt = (0.9 + .5 * I - x) / tau + sigma * (2 / tau)**.5 * xi : 1
'''
neurons = NeuronGroup(N, model=eqs_neurons, threshold='x > 1',
 reset='x = 0', refractory=5*ms)
neurons.x = 'rand()'
spikes = SpikeMonitor(neurons)

run(500*ms)example

In this second solution the variable I is calculated multiple times
within the ‘noisy neurons’, which in a sense is an unnecessary
computational overhead. However, in the massively parallel GPU
accelerators this is not necessarily a problem. Note that this method
only works where the common input is deterministic. If the input had
been:

input = NeuronGroup(1, 'dx/dt = -x / tau_input + (2 /tau_input)**.5 * xi : 1')

i.e. contains a random element, then moving the common input into the
‘noisy neuron’ population would make it individual, independent noisy
inputs with likely quite different results.

Custom events

GeNN does not support custom event types in addition to the standard threshold
and reset, they can therefore not be used with the Brian2GeNN backend.

Heterogeneous delays

At the moment, GeNN only has support for a single homogeneous delay for each
synaptic population. Brian simulations that use heterogeneous delays can
therefore not use the Brian2GeNN backend. In simple cases with just a few
different delay values (e.g. one set of connections with a short and another
set of connections with a long delay), this limitation can be worked around by
creating multiple Synapses objects with each using a homogeneous delay.

Multiple synaptic pathways

GeNN does not have support for multiple synaptic pathways as Brian 2 does, you
can therefore only use a single pre and post pathway with Brian2GeNN.

Timed arrays

Timed arrays post a problem in the Brian2GeNN interface because they
necessitate communication from the timed array to the target group at
runtime that would result in host to GPU copies in the final CUDA/C++
code. This could lead to large inefficiences and for the moment we
have therefore decided to not support this feature.

Multiple clocks

GeNN is by design operated with a single clock with a fixed time step
across the entire simulation. If you are using multiple clocks and
they are commensurate, please reformulate your script using just the
fastest clock as the standard clock. If your clocks are not
commensurate, and this is essential for your simulation, Brian2GeNN
can unfortunately not be used.

Multiple runs

GeNN is designed for single runs and cannot be used for the Brian style
multiple runs. However, if this is of use, code can be run repeatedly
“in multiple runs” that are completely independent. This just needs a
reset_device command issued after the run(runtime) command.
Note, however, that these multiple runs are completely independent, i.e. for
the second run the code generation pipeline for Brian2GeNN is repeated in its
entirety which may incur a measurable delay.

Multiple networks

Multiple networks cannot be supported in the Brian2GeNN
interface. Please use only a single network, either by creating it explicitly
as a Network object or by not creating any (i.e. using Brian’s “magic”
system).

Custom schedules

GeNN has a fixed order of operations during a time step, Brian’s more flexible
scheduling model (e.g. changing a network’s schedule or individual objects’
when attribute) can therefore not be used.

Brian2GeNN specific preferences

Connectivity

The preference devices.genn.connectivity determines what
connectivity scheme is used within GeNN to represent the connections
between neurons. GeNN supports the use of full connectivity matrices
(‘DENSE’) or a representation where connections are represented with
sparse matrix methods (‘SPARSE’). You can set the preference like this:

from brian2 import *
import brian2genn
set_device('genn')

prefs.devices.genn.connectivity = 'DENSE'

Compiler preferences

Brian2GeNN will use the compiler preferences specified for Brian2 for the
C++ compiler call. This means you should set the
codegen.cpp.extra_compile_args preference, or set
codegen.cpp.extra_compile_args_gcc and
codegen.cpp.extra_compile_args_msvc to set preferences specifically for
compilation under Linux/OS-X and Windows, respectively.

Brian2GeNN also offers a preference to specify additional compiler flags for the
CUDA compilation with the nvcc compiler: devices.genn.extra_compile_args_nvcc.

Note that all of the above preferences expect a Python list of individual
compiler arguments, i.e. to for example add an argument for the nvcc compiler,
use:

prefs.devices.genn.extra_compile_args_nvcc += ['--verbose']

On Windows, Brian2GeNN will try to find the file vcvarsall.bat to enable
compilation with the MSVC compiler automatically. If this fails, or if you have
multiple versions of MSVC installed and want to select a specific one, you can
set the codegen.cpp.msvc_vars_location preference.

List of preferences

Preferences that relate to the brian2genn interface

	devices.genn.auto_choose_device = True

	The GeNN preference autoChooseDevice that determines whether or not a GPU should be chosen automatically when multiple CUDA enabled devices are present.

devices.genn.connectivity = 'SPARSE'

This preference determines which connectivity scheme is to be employed within GeNN. The valid alternatives are ‘DENSE’ and ‘SPARSE’. For ‘DENSE’ the GeNN dense matrix methods are used for all connectivity matrices. When ‘SPARSE’ is chosen, the GeNN sparse matrix representations are used.

	devices.genn.cuda_path = None

	The path to the CUDA installation (if not set, the CUDA_PATH environment variable will be used instead)

	devices.genn.default_device = 0

	The GeNN preference defaultDevice that determines CUDA enabled device should be used if it is not automatically chosen.

	devices.genn.extra_compile_args_nvcc = ['-O3']

	Extra compile arguments (a list of strings) to pass to the nvcc compiler.

	devices.genn.path = None

	The path to the GeNN installation (if not set, the GENN_PATH environment variable will be used instead)

How Brian2GeNN works inside

The Brian2GeNN interface is providing middleware to use the GeNN
simulator framework as a backend to the Brian 2 simulator. It has been
designed in a way that makes maximal use of the existing Brian 2 code
base by deriving large parts of the generated code from the
cpp_standalone device of Brian 2.

Model and user code in GeNN

In GeNN a simulation is assembled from two main sources of code. Users
of GeNN provide “code snippets” as C++ strings that define neuron and
synapse models. These are then assembled into neuronal networks in a
model definition function. Based on the mdoel definition, GeNN
generates GPU and equivalent CPU simulation code for the described
network. This is the first source of code.

The actual simulation and
handling input and output data is the responsibility of the user in
GeNN. Users provide their own C/C++ code for this that utilizes the
generated code described above for the core simulation but is otherwise
fully independent of the core GeNN system.

In the Brian2GeNN both the model definition and the user code for the
main simulation are derived from the Brian 2 model description. The
user side code for data handling etc derives more or less directly
from the Brian 2 cpp_standalone device in the form of
GennUserCodeObjects. The model definition code and
“code snippets” derive from separate templates and are capsulated into
GeNNCodeObjects.

Code generation pipeline in Brian2GeNN

The model generation pipeline in Brian2GeNN involves a number of
steps. First, Brian 2 performs the usual interpretation of equations
and unit checking, as well as, applying an integration scheme onto
ODEs. The resulting abstract code is then translated into C++ code for
GeNNUserCodeObjects and C++-like code for GeNNCodeObjects. These
are then assembled using templating in Jinja2 into C++ code and GeNN
model definition code. The details of making Brian 2’s cpp_standalone
code suitable for the GeNN user code and GeNN model definition code
and code snippets are taken care of in the GeNNDevice.build
function.

Once all the sources have been generated, the resulting GeNN project
is built with the GeNN code generation pipeline. See the GeNN manual for
more details on this process.

Templates in Brian2GeNN

The templates used for code generation in Brian2GeNN, as mentioned
above, partially derive from the cpp_standalone templates of
Brian 2. More than half of the templates are identical. Other
templates, however, in particular for the model definition file and
the main simulation engine and main entry file “runner.cc” have been
specifically written for Brian2GeNN to produce a valid GeNN project.

Data transfers and results

In Brian 2, data structures for initial values and synaptic
connectivities etc are written to disk into binary files if a
standalone device is used. The executable of the standalone device
then reads the data from disk and initializes its variables with it.
In Brian2GeNN the same mechanism is used, and after the data has been
read from disk with the native cpp_standalone methods, there is a
translation step, where Brian2GeNN provides code that translates the
data from cpp_standalone arrays into the appropriate GeNN data
structures. The methods for this process are provided in the static
(not code-generated) “b2glib”.

At the end of a simulation, the inverse process takes place and GeNN
data is transfered back into cpp_standalone arrays. Native Brian 2
cpp_standalone code is then invoked to write data back to disk.

If monitors are used, the translation occurs at every instance when
monitors are updated.

Memory usage

Related to the implementation of data flows in Brian2GeNN described
above the host memory used in a run in brian2GeNN is about twice what
would have been used in a Brian 2 native cpp_standalone
implementation because all data is held in two different formats - as
cpp_standalone arrays and as GeNN data structures.

brian2genn package

binomial module

Implementation of BinomialFunction

codeobject module

Brian2GeNN defines two different types of code objects, GeNNCodeObject and GeNNUserCodeObject.
GeNNCodeObject is the class of code objects that produce code snippets for GeNN neuron or synapse models.
GeNNUserCodeObject is the class of code objects that produce C++ code which is used as “user-side” code in GeNN. The class derives directly from Brian 2’s CPPStandaloneCodeObject, using teh CPPCodeGenerator.

Exported members:
GeNNCodeObject, GeNNUserCodeObject

Classes

	GeNNCodeObject(owner, code, variables, …)

	Class of code objects that generate GeNN “code snippets”

	GeNNUserCodeObject(owner, code, variables, …)

	Class of code objects that generate GeNN “user code”

correctness_testing module

Definitions of the configuration for correctness testing.

Exported members:
GeNNConfiguration, GeNNConfigurationCPU, GeNNConfigurationOptimized

Classes

	GeNNConfiguration([maximum_run_time])

	Methods

	GeNNConfigurationCPU([maximum_run_time])

	Methods

	GeNNConfigurationOptimized([maximum_run_time])

	Methods

device module

Module implementing the bulk of the brian2genn interface by defining the “genn” device.

Exported members:
GeNNDevice

Classes

	CPPWriter(project_dir)

	Class that provides the method for writing C++ files from a string of code.

	DelayedCodeObject(owner, name, …)

	Dummy class used for delaying the CodeObject creation of stateupdater, thresholder, and resetter of a NeuronGroup (which will all be merged into a single code object).

	GeNNDevice()

	The main “genn” device.

	neuronModel()

	Class that contains all relevant information of a neuron model.

	rateMonitorModel()

	CLass that contains all relevant information about a rate monitor.

	spikeMonitorModel()

	Class the contains all relevant information about a spike monitor.

	spikegeneratorModel()

	Class that contains all relevant information of a spike generator group.

	stateMonitorModel()

	Class that contains all relvant information about a state monitor.

	synapseModel()

	Class that contains all relevant information about a synapse model.

Functions

	decorate(code, variables, shared_variables, …)

	Support function for inserting GeNN-specific “decorations” for variables and parameters, such as $(.).

	extract_source_variables(variables, varname, …)

	Support function to extract the “atomic” variables used in a variable that is of instance Subexpression.

	freeze(code, ns)

	Support function for substituting constant values.

	get_compile_args()

	Get the compile args based on the users preferences.

	get_genn_prefs()

	Get the GeNN preferences that are exposed in brian2genn user preferences.

	stringify(code)

	Helper function to prepare multiline strings (potentially including quotation marks) to be included in strings.

Objects

	genn_device

	The main “genn” device.

genn_generator module

The code generator for the “genn” language. This is mostly C++ with some specific
decorators (mainly “__host__ __device__”) to allow operation in a CUDA context.

Exported members:
GeNNCodeGenerator

Classes

	GeNNCodeGenerator(*args, **kwds)

	“GeNN language”

Functions

	get_var_ndim(v[, default_value])

	Helper function to get the ndim attribute of a DynamicArrayVariable, falling back to the previous name dimensions if necessary.

insyn module

GeNN accumulates postsynaptic changes into a variable inSyn. The idea of this
module is to check, for a given Synapses, whether or not it can be recast into
this formulation, and if so to relabel the variables appropriately.

In GeNN, each synapses object has an associated variable inSyn. The idea is
that we will do something like this in Brian terms:

v += w (synapses code)
dv/dt = -v/tau (neuron code)

should be replaced by:

inSyn += w (synapses code)
dv/dt = -v/tau (neuron code)
v += inSyn; inSyn = 0; (custom operation carried out after integration step)

The reason behind this organisation in GeNN is that the communication of spike events and the
corresponding updates of post-synaptic variables are separated out for better performance. In
priniciple all kinds of operations on the pre- and post-synaptic variables can be allowed
but with a heavy hit in the computational speed.

The conditions for this rewrite to be possible are as follows for presynaptic
event code:
- Each expression is allowed to modify synaptic variables.
- An expression can modify a neuron variable only in the following ways:

neuron_var += expr (where expr contains only synaptic variables)
neuron_var = expr (where expr-neuron_var can be simplified to contain only synaptic variables)

	The set of modified neuron variables can only have one element

And for the postsynaptic code, only synaptic variables can be modified.

The output of this code should be:
- Raise an error if it is not possible, explaining why
- Replace the line neuron_var (+)= expr with addtoinSyn = new_expr
- Return neuron_var so that it can be used appropriately in GeNNDevice.build

The GeNN syntax is:

addtoinSyn = expr

Brian codegen implementation:

I think the correct place to start is given a Statement sequence for a
Synapses pre or post code object, check the conditions. Then, we need to create
two additional CodeObjects which overwrite translate_one_statement_sequence to
call this function and rewrite the appropriate statement.

Functions

	check_pre_code(codegen, stmts, vars_pre, …)

	Given a set of statements stmts where the variables names in vars_pre are presynaptic, in vars_syn are synaptic and in vars_post are postsynaptic, check that the conditions for compatibility with GeNN are met, and return a new statement sequence translated for compatibility with GeNN, along with the name of the targeted variable.

preferences module

Preferences that relate to the brian2genn interface.

Subpackages

GeNNCodeObject class

(Shortest import: from brian2genn.codeobject import GeNNCodeObject)

	
class brian2genn.codeobject.GeNNCodeObject(owner, code, variables, variable_indices, template_name, template_source, name='codeobject*')

	Bases: brian2.codegen.codeobject.CodeObject

Class of code objects that generate GeNN “code snippets”

GeNNUserCodeObject class

(Shortest import: from brian2genn.codeobject import GeNNUserCodeObject)

	
class brian2genn.codeobject.GeNNUserCodeObject(owner, code, variables, variable_indices, template_name, template_source, name='codeobject*')

	Bases: brian2.devices.cpp_standalone.codeobject.CPPStandaloneCodeObject

Class of code objects that generate GeNN “user code”

GeNNConfiguration class

(Shortest import: from brian2genn.correctness_testing import GeNNConfiguration)

	
class brian2genn.correctness_testing.GeNNConfiguration(maximum_run_time=10. * Msecond)

	Bases: brian2.tests.features.base.Configuration

Methods

	before_run()

	

Details

	
before_run()

	

GeNNConfigurationCPU class

(Shortest import: from brian2genn.correctness_testing import GeNNConfigurationCPU)

	
class brian2genn.correctness_testing.GeNNConfigurationCPU(maximum_run_time=10. * Msecond)

	Bases: brian2.tests.features.base.Configuration

Methods

	before_run()

	

Details

	
before_run()

	

GeNNConfigurationOptimized class

(Shortest import: from brian2genn.correctness_testing import GeNNConfigurationOptimized)

	
class brian2genn.correctness_testing.GeNNConfigurationOptimized(maximum_run_time=10. * Msecond)

	Bases: brian2.tests.features.base.Configuration

Methods

	before_run()

	

Details

	
before_run()

	

CPPWriter class

(Shortest import: from brian2genn.device import CPPWriter)

	
class brian2genn.device.CPPWriter(project_dir)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that provides the method for writing C++ files from a string of code.

Methods

	write(filename, contents)

	

Details

	
write(filename, contents)

	

DelayedCodeObject class

(Shortest import: from brian2genn.device import DelayedCodeObject)

	
class brian2genn.device.DelayedCodeObject(owner, name, abstract_code, variables, variable_indices, override_conditional_write)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Dummy class used for delaying the CodeObject creation of stateupdater,
thresholder, and resetter of a NeuronGroup (which will all be merged into a
single code object).

GeNNDevice class

(Shortest import: from brian2genn.device import GeNNDevice)

	
class brian2genn.device.GeNNDevice

	Bases: brian2.devices.cpp_standalone.device.CPPStandaloneDevice

The main “genn” device. This does most of the translation work from Brian 2
generated code to functional GeNN code, assisted by the “GeNN language”.

Attributes

	source_files

	List of all source and header files (to be included in runner)

Methods

	activate([build_on_run])

	Called when this device is set as the current device.

	add_array_variable(model, varname, variable)

	

	add_array_variables(model, owner)

	

	add_parameter(model, varname, variable)

	

	build([directory, compile, run, use_GPU, …])

	This function does the main post-translation work for the genn device.

	code_object(owner, name, abstract_code, …)

	Processes abstract code into code objects and stores them in different arrays for GeNNCodeObjects and GeNNUserCodeObjects.

	code_object_class([codeobj_class])

	Return CodeObject class (either CPPStandaloneCodeObject class or input)

	collect_synapses_variables(synapse_model, …)

	

	compile_source(debug, directory, use_GPU)

	

	copy_source_files(writer, directory)

	

	fill_with_array(var, arr)

	Fill an array with the values given in another array.

	fix_random_generators(model, code)

	Translates cpp_standalone style random number generator calls into GeNN- compatible calls by replacing the cpp_standalone _vectorisation_idx argument with the GeNN _seed argument.

	fix_synapses_code(synapse_model, pathway, …)

	

	generate_code_objects(writer)

	

	generate_engine_source(writer)

	

	generate_main_source(writer, main_lines)

	

	generate_makefile(directory, use_GPU)

	

	generate_model_source(writer)

	

	generate_objects_source(arange_arrays, net, …)

	

	make_main_lines()

	Generates the code lines that handle initialisation of Brian 2 cpp_standalone type arrays.

	network_run(net, duration[, report, …])

	

	process_neuron_groups(neuron_groups, objects)

	

	process_poisson_groups(objects, poisson_groups)

	

	process_rate_monitors(rate_monitors)

	

	process_spike_monitors(spike_monitors)

	

	process_spikegenerators(spikegenerator_groups)

	

	process_state_monitors(directory, …)

	

	process_synapses(synapse_groups)

	

	run(directory, use_GPU, with_output)

	

	variableview_set_with_expression(…[, …])

	

	variableview_set_with_expression_conditional(…)

	

	variableview_set_with_index_array(…)

	

Details

	
source_files

	List of all source and header files (to be included in runner)

	
activate(build_on_run=True, **kwargs)

	Called when this device is set as the current device.

	
add_array_variable(model, varname, variable)

	

	
add_array_variables(model, owner)

	

	
add_parameter(model, varname, variable)

	

	
build(directory='GeNNworkspace', compile=True, run=True, use_GPU=True, debug=False, with_output=True, direct_call=True)

	This function does the main post-translation work for the genn device.
It uses the code generated during/before run() and extracts information
about neuron groups, synapse groups, monitors, etc. that is then
formatted for use in GeNN-specific templates. The overarching strategy
of the brian2genn interface is to use cpp_standalone code generation
and templates for most of the “user-side code” (in the meaning defined
in GeNN) and have GeNN-specific templates for the model definition and
the main code for the executable that pulls everything together (in
main.cpp and engine.cpp templates). The handling of input/output
arrays for everything is lent from cpp_standalone and the
cpp_standalone arrays are then translated into GeNN-suitable data
structures using the static (not code-generated) b2glib library
functions. This means that the GeNN specific cod only has to be
concerned about executing the correct model and feeding back results
into the appropriate cpp_standalone data structures.

	
code_object(owner, name, abstract_code, variables, template_name, variable_indices, codeobj_class=None, template_kwds=None, override_conditional_write=None)

	Processes abstract code into code objects and stores them in different
arrays for GeNNCodeObjects and GeNNUserCodeObjects.

	
code_object_class(codeobj_class=None, *args, **kwds)

	Return CodeObject class (either CPPStandaloneCodeObject class or input)

	Parameters

	codeobj_class : a CodeObject class, optional

If this is keyword is set to None or no arguments are given, this method will return
the default (CPPStandaloneCodeObject class).

fallback_pref : str, optional

For the cpp_standalone device this option is ignored.

	Returns

	codeobj_class : class

The CodeObject class that should be used

	
collect_synapses_variables(synapse_model, pathway, codeobj)

	

	
compile_source(debug, directory, use_GPU)

	

	
copy_source_files(writer, directory)

	

	
fill_with_array(var, arr)

	Fill an array with the values given in another array.

	Parameters

	var : ArrayVariable

The array to fill.

arr : ndarray

The array values that should be copied to var.

	
fix_random_generators(model, code)

	Translates cpp_standalone style random number generator calls into
GeNN- compatible calls by replacing the cpp_standalone
_vectorisation_idx argument with the GeNN _seed argument.

	
fix_synapses_code(synapse_model, pathway, codeobj, code)

	

	
generate_code_objects(writer)

	

	
generate_engine_source(writer)

	

	
generate_main_source(writer, main_lines)

	

	
generate_makefile(directory, use_GPU)

	

	
generate_model_source(writer)

	

	
generate_objects_source(arange_arrays, net, static_array_specs, synapses, writer)

	

	
make_main_lines()

	Generates the code lines that handle initialisation of Brian 2
cpp_standalone type arrays. These are then translated into the
appropriate GeNN data structures in separately generated code.

	
network_run(net, duration, report=None, report_period=10. * second, namespace=None, profile=False, level=0, **kwds)

	

	
process_neuron_groups(neuron_groups, objects)

	

	
process_poisson_groups(objects, poisson_groups)

	

	
process_rate_monitors(rate_monitors)

	

	
process_spike_monitors(spike_monitors)

	

	
process_spikegenerators(spikegenerator_groups)

	

	
process_state_monitors(directory, state_monitors, writer)

	

	
process_synapses(synapse_groups)

	

	
run(directory, use_GPU, with_output)

	

	
variableview_set_with_expression(variableview, item, code, run_namespace, check_units=True)

	

	
variableview_set_with_expression_conditional(variableview, cond, code, run_namespace, check_units=True)

	

	
variableview_set_with_index_array(variableview, item, value, check_units)

	

neuronModel class

(Shortest import: from brian2genn.device import neuronModel)

	
class brian2genn.device.neuronModel

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that contains all relevant information of a neuron model.

rateMonitorModel class

(Shortest import: from brian2genn.device import rateMonitorModel)

	
class brian2genn.device.rateMonitorModel

	Bases: object [https://docs.python.org/3/library/functions.html#object]

CLass that contains all relevant information about a rate monitor.

spikeMonitorModel class

(Shortest import: from brian2genn.device import spikeMonitorModel)

	
class brian2genn.device.spikeMonitorModel

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class the contains all relevant information about a spike monitor.

spikegeneratorModel class

(Shortest import: from brian2genn.device import spikegeneratorModel)

	
class brian2genn.device.spikegeneratorModel

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that contains all relevant information of a spike generator group.

stateMonitorModel class

(Shortest import: from brian2genn.device import stateMonitorModel)

	
class brian2genn.device.stateMonitorModel

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that contains all relvant information about a state monitor.

synapseModel class

(Shortest import: from brian2genn.device import synapseModel)

	
class brian2genn.device.synapseModel

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that contains all relevant information about a synapse model.

decorate function

(Shortest import: from brian2genn.device import decorate)

	
brian2genn.device.decorate(code, variables, shared_variables, parameters, do_final=True)

	Support function for inserting GeNN-specific “decorations” for variables and
parameters, such as $(.).

extract_source_variables function

(Shortest import: from brian2genn.device import extract_source_variables)

	
brian2genn.device.extract_source_variables(variables, varname, smvariables)

	Support function to extract the “atomic” variables used in a variable
that is of instance Subexpression.

freeze function

(Shortest import: from brian2genn.device import freeze)

	
brian2genn.device.freeze(code, ns)

	Support function for substituting constant values.

get_compile_args function

(Shortest import: from brian2genn.device import get_compile_args)

	
brian2genn.device.get_compile_args()

	Get the compile args based on the users preferences. Uses Brian’s
preferences for the C++ compilation (either codegen.cpp.extra_compile_args
for both Windows and UNIX, or codegen.cpp.extra_compile_args_gcc for UNIX
and codegen.cpp.extra_compile_args_msvc for Windows), and the Brian2GeNN
preference devices.genn.extra_compile_args_nvcc for the CUDA compilation
with nvcc.

	Returns

	(compile_args_gcc, compile_args_msvc, compile_args_nvcc) : (str, str, str)

Tuple with the respective compiler arguments (as strings).

get_genn_prefs function

(Shortest import: from brian2genn.device import get_genn_prefs)

	
brian2genn.device.get_genn_prefs()

	Get the GeNN preferences that are exposed in brian2genn user preferences.
Uses the Brian2GeNN preferences devices.genn.auto_choose_device and
devices.genn.default_device

	Returns

	(genn_auto_choose_device, genn_default_device) : (int, int)

Tuple with the genn preference settings.

stringify function

(Shortest import: from brian2genn.device import stringify)

	
brian2genn.device.stringify(code)

	Helper function to prepare multiline strings (potentially including
quotation marks) to be included in strings.

	Parameters

	code : str

The code to convert.

genn_device object

(Shortest import: from brian2genn.device import genn_device)

	
brian2genn.device.genn_device = <brian2genn.device.GeNNDevice object>

	The main “genn” device. This does most of the translation work from Brian 2
generated code to functional GeNN code, assisted by the “GeNN language”.

GeNNCodeGenerator class

(Shortest import: from brian2genn.genn_generator import GeNNCodeGenerator)

	
class brian2genn.genn_generator.GeNNCodeGenerator(*args, **kwds)

	Bases: brian2.codegen.generators.base.CodeGenerator

“GeNN language”

For user-defined functions, there are two keys to provide:

	support_code

	The function definition which will be added to the support code.

	hashdefine_code

	The #define code added to the main loop.

Attributes

	flush_denormals

	

	restrict

	

Methods

	denormals_to_zero_code()

	

	determine_keywords()

	A dictionary of values that is made available to the templated.

	get_array_name(var[, access_data])

	

	translate_expression(expr)

	Translate the given expression string into a string in the target language, returns a string.

	translate_one_statement_sequence(statements)

	

	translate_statement(statement)

	Translate a single line Statement into the target language, returns a string.

	translate_to_declarations(statements)

	

	translate_to_read_arrays(statements)

	

	translate_to_statements(statements)

	

	translate_to_write_arrays(statements)

	

Details

	
flush_denormals

	

	
restrict

	

	
denormals_to_zero_code()

	

	
determine_keywords()

	A dictionary of values that is made available to the templated. This is
used for example by the CPPCodeGenerator to set up all the supporting
code

	
static get_array_name(var, access_data=True)

	

	
translate_expression(expr)

	Translate the given expression string into a string in the target
language, returns a string.

	
translate_one_statement_sequence(statements, scalar=False)

	

	
translate_statement(statement)

	Translate a single line Statement into the target language, returns
a string.

	
translate_to_declarations(statements)

	

	
translate_to_read_arrays(statements)

	

	
translate_to_statements(statements)

	

	
translate_to_write_arrays(statements)

	

get_var_ndim function

(Shortest import: from brian2genn.genn_generator import get_var_ndim)

	
brian2genn.genn_generator.get_var_ndim(v, default_value=None)

	Helper function to get the ndim attribute of a DynamicArrayVariable,
falling back to the previous name dimensions if necessary.

	Parameters

	v : ArrayVariable

The variable for which to retrieve the number of dimensions.

default_value : optional

A default value if the attribute does not exist

	Returns

	ndim : int

Number of dimensions

check_pre_code function

(Shortest import: from brian2genn.insyn import check_pre_code)

	
brian2genn.insyn.check_pre_code(codegen, stmts, vars_pre, vars_syn, vars_post, conditional_write_vars)

	Given a set of statements stmts where the variables names in vars_pre are
presynaptic, in vars_syn are synaptic and in vars_post are postsynaptic,
check that the conditions for compatibility with GeNN are met, and return
a new statement sequence translated for compatibility with GeNN, along
with the name of the targeted variable.

Also adapts the synaptic statement to be multiplied by 0 for a refractory
post-synaptic cell.

 Python Module Index

 b |
 c |
 d |
 g |
 i |
 p

 		 	

 		
 b	

 	
 	
 brian2genn.binomial	

 		 	

 		
 c	

 	
 	
 brian2genn.codeobject	

 	
 	
 brian2genn.correctness_testing	

 		 	

 		
 d	

 	
 	
 brian2genn.device	

 		 	

 		
 g	

 	
 	
 brian2genn.genn_generator	

 		 	

 		
 i	

 	
 	
 brian2genn.insyn	

 		 	

 		
 p	

 	
 	
 brian2genn.preferences	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	activate() (brian2genn.device.GeNNDevice method)

 	add_array_variable() (brian2genn.device.GeNNDevice method)

 	
 	add_array_variables() (brian2genn.device.GeNNDevice method)

 	add_parameter() (brian2genn.device.GeNNDevice method)

B

 	
 	before_run() (brian2genn.correctness_testing.GeNNConfiguration method)

 	(brian2genn.correctness_testing.GeNNConfigurationCPU method)

 	(brian2genn.correctness_testing.GeNNConfigurationOptimized method)

 	brian2genn.binomial (module)

 	brian2genn.codeobject (module)

 	
 	brian2genn.correctness_testing (module)

 	brian2genn.device (module)

 	brian2genn.genn_generator (module)

 	brian2genn.insyn (module)

 	brian2genn.preferences (module)

 	build() (brian2genn.device.GeNNDevice method)

C

 	
 	check_pre_code() (in module brian2genn.insyn)

 	code_object() (brian2genn.device.GeNNDevice method)

 	code_object_class() (brian2genn.device.GeNNDevice method)

 	
 	collect_synapses_variables() (brian2genn.device.GeNNDevice method)

 	compile_source() (brian2genn.device.GeNNDevice method)

 	copy_source_files() (brian2genn.device.GeNNDevice method)

 	CPPWriter (class in brian2genn.device)

D

 	
 	decorate() (in module brian2genn.device)

 	DelayedCodeObject (class in brian2genn.device)

 	
 	denormals_to_zero_code() (brian2genn.genn_generator.GeNNCodeGenerator method)

 	determine_keywords() (brian2genn.genn_generator.GeNNCodeGenerator method)

E

 	
 	extract_source_variables() (in module brian2genn.device)

F

 	
 	fill_with_array() (brian2genn.device.GeNNDevice method)

 	fix_random_generators() (brian2genn.device.GeNNDevice method)

 	
 	fix_synapses_code() (brian2genn.device.GeNNDevice method)

 	flush_denormals (brian2genn.genn_generator.GeNNCodeGenerator attribute)

 	freeze() (in module brian2genn.device)

G

 	
 	generate_code_objects() (brian2genn.device.GeNNDevice method)

 	generate_engine_source() (brian2genn.device.GeNNDevice method)

 	generate_main_source() (brian2genn.device.GeNNDevice method)

 	generate_makefile() (brian2genn.device.GeNNDevice method)

 	generate_model_source() (brian2genn.device.GeNNDevice method)

 	generate_objects_source() (brian2genn.device.GeNNDevice method)

 	genn_device (in module brian2genn.device)

 	GeNNCodeGenerator (class in brian2genn.genn_generator)

 	GeNNCodeObject (class in brian2genn.codeobject)

 	
 	GeNNConfiguration (class in brian2genn.correctness_testing)

 	GeNNConfigurationCPU (class in brian2genn.correctness_testing)

 	GeNNConfigurationOptimized (class in brian2genn.correctness_testing)

 	GeNNDevice (class in brian2genn.device)

 	GeNNUserCodeObject (class in brian2genn.codeobject)

 	get_array_name() (brian2genn.genn_generator.GeNNCodeGenerator static method)

 	get_compile_args() (in module brian2genn.device)

 	get_genn_prefs() (in module brian2genn.device)

 	get_var_ndim() (in module brian2genn.genn_generator)

M

 	
 	make_main_lines() (brian2genn.device.GeNNDevice method)

N

 	
 	network_run() (brian2genn.device.GeNNDevice method)

 	
 	neuronModel (class in brian2genn.device)

P

 	
 	process_neuron_groups() (brian2genn.device.GeNNDevice method)

 	process_poisson_groups() (brian2genn.device.GeNNDevice method)

 	process_rate_monitors() (brian2genn.device.GeNNDevice method)

 	
 	process_spike_monitors() (brian2genn.device.GeNNDevice method)

 	process_spikegenerators() (brian2genn.device.GeNNDevice method)

 	process_state_monitors() (brian2genn.device.GeNNDevice method)

 	process_synapses() (brian2genn.device.GeNNDevice method)

R

 	
 	rateMonitorModel (class in brian2genn.device)

 	
 	restrict (brian2genn.genn_generator.GeNNCodeGenerator attribute)

 	run() (brian2genn.device.GeNNDevice method)

S

 	
 	source_files (brian2genn.device.GeNNDevice attribute)

 	spikegeneratorModel (class in brian2genn.device)

 	spikeMonitorModel (class in brian2genn.device)

 	
 	stateMonitorModel (class in brian2genn.device)

 	stringify() (in module brian2genn.device)

 	synapseModel (class in brian2genn.device)

T

 	
 	translate_expression() (brian2genn.genn_generator.GeNNCodeGenerator method)

 	translate_one_statement_sequence() (brian2genn.genn_generator.GeNNCodeGenerator method)

 	translate_statement() (brian2genn.genn_generator.GeNNCodeGenerator method)

 	
 	translate_to_declarations() (brian2genn.genn_generator.GeNNCodeGenerator method)

 	translate_to_read_arrays() (brian2genn.genn_generator.GeNNCodeGenerator method)

 	translate_to_statements() (brian2genn.genn_generator.GeNNCodeGenerator method)

 	translate_to_write_arrays() (brian2genn.genn_generator.GeNNCodeGenerator method)

V

 	
 	variableview_set_with_expression() (brian2genn.device.GeNNDevice method)

 	
 	variableview_set_with_expression_conditional() (brian2genn.device.GeNNDevice method)

 	variableview_set_with_index_array() (brian2genn.device.GeNNDevice method)

W

 	
 	write() (brian2genn.device.CPPWriter method)

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Brian2GeNN documentation

 		
 Using Brian2GeNN

 		
 Unsupported features in Brian2GeNN

 		
 Brian2GeNN specific preferences

 		
 How Brian2GeNN works inside

 		
 Reference documentation

 		
 GeNNCodeObject class

 		
 GeNNUserCodeObject class

 		
 GeNNConfiguration class

 		
 GeNNConfigurationCPU class

 		
 GeNNConfigurationOptimized class

 		
 CPPWriter class

 		
 DelayedCodeObject class

 		
 GeNNDevice class

 		
 neuronModel class

 		
 rateMonitorModel class

 		
 spikeMonitorModel class

 		
 spikegeneratorModel class

 		
 stateMonitorModel class

 		
 synapseModel class

 		
 decorate function

 		
 extract_source_variables function

 		
 freeze function

 		
 get_compile_args function

 		
 get_genn_prefs function

 		
 stringify function

 		
 genn_device object

 		
 GeNNCodeGenerator class

 		
 get_var_ndim function

 		
 check_pre_code function

_static/ajax-loader.gif

